Online Handwritten Character Recognition Using an Optical Backpropagation Neural Networks

Walid A. Salameh, Mohammed A. Otair
InSITE 2005  •  Volume 5  •  2005
There are many successful applications of Backpropagation (BP) for training multilayer neural networks. However, they have many shortcomings. Learning often takes insupportable time to converge, and it may fall into local minima at all. One of the possible remedies to escape from local minima is using a very small learning rate, but this will slow the learning process. The proposed algorithm is presented for the training of multilayer neural networks with very small learning rate, especially when using large training set size. It can apply in a generic manner for any network size that uses a backpropgation algorithm through optical time. This paper studies the performance of the Optical Backpropagation algorithm OBP (Otair & Salameh, 2004a, 2004b. 2005) on training a neural network for online handwritten character recognition in comparison with backpropagation BP.
Neural Networks (NN), Backpropagation (BP), Optical backprpoagation (OBP), Online Handwritten Character Recognition.
2 total downloads
Share this
 Back

Back to Top ↑